WOLVERHAMPTON
MULTI ACADEMY TRUST

Calculation policy UKS2

At Edgar Stammers we follow Power Maths. The following pages show the progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across our school helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

KEY STAGE 2

In upper Key Stage 2, children build on secure foundations in calculation, and develop fluency, accuracy and flexibility in their approach to the four operations. They work with whole numbers and adapt their skills to work with decimals, and they continue to develop their ability to select appropriate, accurate and efficient operations.
Key language: decimal, column methods, exchange, partition, mental method, ten thousand, hundred thousand, million, factor, multiple, prime number, square number, cube number

Addition and subtraction: Children build on

 their column methods to add and subtract numbers with up to seven digits, and they adapt the methods to calculate efficiently and effectively with decimals, ensuring understanding of place value at every stage. Children compare and contrast methods, and they select mental methods or jottings where appropriate and where these are more likely to be efficient or accurate when compared with formal column methods.Bar models are used to represent the calculations required to solve problems and may indicate where efficient methods can be chosen.

Multiplication and division: Building on their understanding, children develop methods to multiply up to 4-digit numbers by single-digit and 2 -digit numbers.
Children develop column methods with an understanding of place value, and they continue to use the key skill of unitising to multiply and divide by 10,100 and 1,000 .
Written division methods are introduced and adapted for division by single-digit and 2-digit numbers and are understood alongside the area model and place value. In Year 6, children develop a secure understanding of how division is related to fractions.
Multiplication and division of decimals are also introduced and refined in Year 6.

Fractions: Children find fractions of amounts, multiply a fraction by a whole number and by another fraction, divide a fraction by a whole number, and add and subtract fractions with different denominators. Children become more confident working with improper fractions and mixed numbers and can calculate with them. Understanding of decimals with up to 3 decimal places is built through place value and as fractions, and children calculate with decimals in the context of measure as well as in pure arithmetic.
Children develop an understanding of percentages in relation to hundredths, and they understand how to work with common percentages: $50 \%, 25 \%, 10 \%$ and 1%.

	Two lengths of fencing are 0.6 m and 0.2 m . How long are they when added together? $0.6 \mathrm{~m} \quad 0.2 \mathrm{~m}$ 	$\begin{aligned} & 0.6+0.2=0.8 \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \end{aligned}$	$\begin{aligned} & \frac{6}{10}+\frac{2}{10}=\frac{8}{10} \\ & 6 \text { tenths }+2 \text { tenths }=8 \text { tenths } \\ & 0.6+0.2=0.8 \end{aligned}$
Adding decimals using column addition	Use place value equipment to represent additions. Show $0.23+0.45$ using place value counters.	Use place value equipment on a place value grid to represent additions. Represent exchange where necessary. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ +1 \cdot 2 \\ \hline 1 \cdot 2 \\ \hline 1 \end{array}$ Include examples where the numbers of decimal places are different. $$	Add using a column method, ensuring that children understand the link with place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 2 r \\ +0 \cdot 4 \\ \hline 0 \cdot 6 \\ \hline 0 \cdot 6 \\ \hline \end{array}$ Include exchange where required, alongside an understanding of place value. $\begin{array}{r} 0 \cdot \text { Tth Hth } \\ \hline 0 \cdot 9 \\ +0 \cdot 3 \\ \hline 1 \cdot 2 \\ \hline \end{array}$ Include additions where the numbers of decimal places are different.$3.4+0.65=?$O Tth Hth $3 \cdot 4$ $+3 \cdot 6$
Year 5 Subtraction			

					Use addition to check subtractions. I calculated 7,546-2,355 = 5,191. I will check using the inverse.
Subtracting decimals	Explore complements to a whole number by working in the context of length.$1-0.49=?$	Use a place value grid to represent the stages of column subtraction, including exchanges where required.$5.74-2.25=?$			Use column subtraction, with an understanding of place value, including subtracting numbers with different numbers of decimal places. $3.921-3.75=?$
		0 000	- Tth $-\infty$	Hth	$\begin{array}{cccc} 0 & \cdot & \text { Tth } & \text { Hth } \\ \hline 3 & \text { Thth } \\ \hline 3 & 2 & 1 \end{array}$
		Exchange I tent	h for 10 hundredth - Th - © \varnothing (®)		$\begin{array}{cccc} 3 \cdot 7 & 5 & 0 \\ \hline & & & \\ \hline \end{array}$
		Now subtract th	he 5 hundredths.		
		Now subtract t	2 tenths, then ther		
Year 5 Multiplication					

Understanding factors	Use cubes or counters to explore the meaning of 'square numbers'. 25 is a square number because it is made from 5 rows of 5 . Use cubes to explore cube numbers. 8 is a cube number.	Use images to explore examples and nonexamples of square numbers. $\begin{aligned} & 8 \times 8=64 \\ & 8^{2}=64 \end{aligned}$ 12 is not a square number, because you cannot multiply a whole number by itself to make 12.	Understand the pattern of square numbers in the multiplication tables. Use a multiplication grid to circle each square number. Can children spot a pattern?
Multiplying by 10, 100 and 1,000	Use place value equipment to multiply by 10,100 and 1,000 by unitising.	Understand the effect of repeated multiplication by 10 .	Understand how exchange relates to the digits when multiplying by 10,100 and 1,000. $\begin{aligned} & 17 \times 10=170 \\ & 17 \times 100=17 \times 10 \times 10=1,700 \\ & 17 \times 1,000=17 \times 10 \times 10 \times 10=17,000 \end{aligned}$
Multiplying by multiples of	Use place value equipment to explore multiplying by unitising.	Use place value equipment to represent how to multiply by multiples of 10,100 and 1,000.	Use known facts and unitising to multiply. $5 \times 4=20$

by 2-digit numbers	$23 \times 15=?$ $23 \times 15=345$	10 m 5 m 28	$\begin{aligned} & 20 \times 10=200 \mathrm{~m}^{2} \\ & 20 \times 5=100 \mathrm{~m}^{2} \end{aligned}$ $5=420$	$\begin{array}{\|c\|} \hline 8 \mathrm{~m} \\ \hline 8 \times 10=80 \mathrm{~m}^{2} \\ \hline 8 \times 5=40 \mathrm{~m}^{2} \\ \hline \begin{array}{rlll} H & T & O \\ 1 & 0 & 0 \\ 8 & 0 \\ 4 & 4 & 0 \\ \hline 4 & 2 & 0 \\ \hline 1 \end{array} \\ \hline \end{array}$	
Multiplying up to 4-digits by 2-digits			e area mode 00 1,716 1,716 boxes of cerea $12=1,716$	en add the parts.\squareTh H T O I 0 0 0 4 0 0 2 0 0 8 0 3 0 6 7 1 6 1	Use column multiplication, ensuring understanding of place value at each stage. Progress to include examples that require multiple exchanges as understanding, confidence and fluency build. $1,274 \times 32=?$ First multiply 1,274 by 2.

			\qquad \qquad Then multiply 1,274 by 30 . Finally, find the total.
Multiplying decimals by	Use place value equipment to explore and understand the exchange of 10 tenths, 10	Represent multiplication by 10 as exchange on a place value grid.	Understand how this exchange is represented on a place value chart.
1,000		$0.14 \times 10=1.4$	
Year 5 Division			

Understanding factors and prime numbers	Use equipment to explore the factors of a given number. $\begin{aligned} & \circ \bullet \bullet 日 \ddots 日, \\ & 24 \div 3=8 \\ & 24 \div 8=3 \end{aligned}$ 8 and 3 are factors of 24 because they divide 24 exactly. $24 \div 5=4$ remainder 4 . 5 is not a factor of 24 because there is a remainder.	Understand that prime numbers are numbers with exactly two factors. $\begin{aligned} & 13 \div 1=13 \\ & 13 \div 2=6 r 1 \\ & 13 \div 4=4 r 1 \end{aligned}$ 1 and 13 are the only factors of 13. 13 is a prime number.	Understand how to recognise prime and composite numbers. I know that 31 is a prime number because it can be divided by only 1 and itself without leaving a remainder. I know that 33 is not a prime number as it can be divided by 1, 3, 11 and 33. I know that 1 is not a prime number, as it has only 1 factor.
Understanding inverse operations and the link with multiplication, grouping and sharing	Use equipment to group and share and to explore the calculations that are present. I have 28 counters. I made 7 groups of 4 . There are 28 in total. I have 28 in total. I shared them equally into 7 groups. There are 4 in each group. I have 28 in total. I made groups of 4. There are 7 equal groups.	Represent multiplicative relationships and explore the families of division facts. $\begin{aligned} & 60 \div 4=15 \\ & 60 \div 15=4 \end{aligned}$	Represent the different multiplicative relationships to solve problems requiring inverse operations. $12 \div 3=\square$ $12 \div$ \square $\times 3=12$ $\div 3=12$ $\times 3$ Understand missing number problems for division calculations and know how to solve them using inverse operations. $\begin{aligned} & 22 \div ?=2 \\ & 22 \div 2=? \\ & ? \div 2=22 \\ & ? \div 22=2 \end{aligned}$

Dividing whole numbers by 10, 100 and 1,000	Use place value equipment to support unitising for division. $4,000 \div 1,000$ \square 4,000 is 4 thousands. $4 \times 1,000=4,000$ So, $4,000 \div 1,000=4$	Use a bar model to support dividing by unitising. $380 \div 10=38$ 380 is 38 tens. $38 \times 10=380$ $10 \times 38=380$ So $380 \div 10=38$	Understand how and why the digits change on a place value grid when dividing by 10,100 or 1,000 . $3,200 \div 100=$? 3,200 is 3 thousands and 2 hundreds. $\begin{aligned} & 200 \div 100=2 \\ & 3,000 \div 100=30 \\ & 3,200 \div 100=32 \end{aligned}$ So, the digits will move two places to the right.
Dividing by multiples of 10,100 and 1,000	Use place value equipment to represent known facts and unitising. 15 ones put into groups of 3 ones. There are 5 groups. $15 \div 3=5$ 15 tens put into groups of 3 tens. There are 5 groups. $150 \div 30=5$	Represent related facts with place value equipment when dividing by unitising. 180 is 18 tens. 18 tens divided into groups of 3 tens. There are 6 groups. $180 \div 30=6$	Reason from known facts, based on understanding of unitising. Use knowledge of the inverse relationship to check. $\begin{aligned} & 3,000 \div 5=600 \\ & 3,000 \div 50=60 \\ & 3,000 \div 500=6 \end{aligned}$ $\begin{aligned} & 5 \times 600=3,000 \\ & 50 \times 60=3,000 \\ & 500 \times 6=3,000 \end{aligned}$

		12 ones divided into groups of 4. There are 3 groups. 12 hundreds divided into groups of 4 hundreds. There are 3 groups. $1200 \div 400=3$	
Dividing up to four digits by a single digit using short division	Explore grouping using place value equipment. $268 \div 2=?$ There is 1 group of 2 hundreds. There are 3 groups of 2 tens. There are 4 groups of 2 ones. $264 \div 2=134$	Use place value equipment on a place value grid alongside short division. The model uses grouping. A sharing model can also be used, although the model would need adapting. Lay out the problem as a short division. There is 1 group of 4 in 4 tens. There are 2 groups of 4 in 8 ones.	Use short division for up to 4-digit numbers divided by a single digit. Use multiplication to check. $556 \times 7=?$ $6 \times 7=42$ $50 \times 7=350$ $500 \times 7=3500$ $3,500+350+42=3,892$

		This can be written as: $16 \times 4+16 \times 6$ $\frac{16 \times 4}{64}+\frac{16 \times 6}{96}=160$	$\begin{aligned} & (4+6) \times 16 \\ & 10 \times 16=160 \end{aligned}$
Year 6 Subtraction			
Comparing and selecting efficient methods	Use counters on a place value grid to represent subtractions of larger numbers.	Compare subtraction methods alongside place value representations. Use a bar model to represent calculations, including 'find the difference' with two bars as comparison. computer game	Compare and select methods. Use column subtraction when mental methods are not efficient. Use two different methods for one calculation as a checking strategy. $\begin{array}{rrrr} \text { Th } & H & T & O \\ \hline 1 & 8 & { }^{14} Z & 1 \\ - & 5 & 5 & 8 \\ \hline & 3 & 9 & 4 \\ \hline \end{array}$ Use column subtraction for decimal problems, including in the context of measure.

Subtracting mentally with larger numbers		Use a bar model to show how unitising can support mental calculations. $950,000-150,000$ That is 950 thousands - 150 thousands \square \square $\longleftarrow 800$ So, the difference is 800 thousands. $950,000-150,000=800,000$	Subtract efficiently from powers of 10 . $10,000-500=?$
Year 6 Multiplication			
Multiplying up to a 4-digit number by a single digit number	Use equipment to explore multiplications. 4 groups of 2,345 This is a multiplication: $\begin{aligned} & 4 \times 2,345 \\ & 2,345 \times 4 \end{aligned}$	Use place value equipment to compare methods. $4 \times 3,0004 \times 2004 \times 204 \times 5$ $12,000+800+80+20=12,900$	Understand area model and shor \dagger multiplication. Compare and select appropriate methods for specific multiplications.
Multiplying up to a 4-digit number by a 2-digit number		Use an area model alongside written multiplication.	Use compact column multiplication with understanding of place value at all stages.

	T O \bullet Tth \bullet $(\cdot) \odot$ Represent 0.3. Multiply by 10 . Exchange each group of ten tenths. $0.3 \times 10=?$ 0.3 is 3 tenths. 10×3 tenths are 30 tenths. 30 tenths are equivalent to 3 ones.	T O \bullet Tth \bullet 3$0.3 \times 10=3$	$\begin{aligned} 8 \times 100 & =800 \\ 8 \times 300 & =800 \times 3 \\ & =2,400 \\ 2.5 \times 10 & =25 \\ 2.5 \times 20 & =2.5 \times 10 \times 2 \\ & =50 \end{aligned}$
Multiplying decimals	Explore decimal multiplications using place value equipment and in the context of measures. 3 groups of 4 tenths is 12 tenths. 4 groups of 3 tenths is 12 tenths. $1.3 \mathrm{~cm} \mathrm{l.3} \mathrm{~cm} \mathrm{l.3} \mathrm{~cm} 1.3 \mathrm{~cm}$ $\begin{aligned} & 4 \times 1 \mathrm{~cm}=4 \mathrm{~cm} \\ & 4 \times 0 \cdot 3 \mathrm{~cm}=1.2 \mathrm{~cm} \\ & 4 \times 1 \cdot 3=4+1 \cdot 2=5 \cdot 2 \mathrm{~cm} \end{aligned}$	Represent calculations on a place value grid. $\begin{aligned} & 3 \times 3=q \\ & 3 \times 0.3=0.9 \end{aligned}$ Understand the link between multiplying decimals and repeated addition.	Use known facts to multiply decimals. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 0.3=1 \cdot 2 \\ & 4 \times 0 \cdot 03=0 \cdot 12 \\ & \\ & 20 \times 5=100 \\ & 20 \times 0.5=10 \\ & 20 \times 0 \cdot 05=1 \end{aligned}$ Find families of facts from a known multiplication. I know that $18 \times 4=72$. This can help me work out: $\begin{aligned} & 1.8 \times 4=? \\ & 18 \times 0.4=? \\ & 180 \times 0.4=? \\ & 18 \times 0.04=? \end{aligned}$

			Divisions with a remainder explored in problem-solving contexts.
Dividing by 10, 100 and 1,000	Use place value equipment to explore division as exchange. Exchange each 0.1 for ten 0.01 s . Divide 20 counters by 10 . 0.2 is 2 tenths. 2 tenths is equivalent to 20 hundredths. 20 hundredths divided by 10 is 2 hundredths.	Represent division to show the relationship with multiplication. Understand the effect of dividing by 10, 100 and 1,000 on the digits on a place value grid. Understand how to divide using division by 10,100 and 1,000 . $12 \div 20=?$ \square \square	Use knowledge of factors to divide by multiples of 10,100 and 1,000 . $40 \div 50=$ \square $40 \rightarrow \div \div \div ?$ $40 \rightarrow \div \div \div+$ $\begin{aligned} & 40 \div 5=8 \\ & 8 \div 10=0.8 \end{aligned}$ So, $40 \div 50=0.8$
Dividing decimals	Use place value equipment to explore division of decimals. 8 tenths divided into 4 groups. 2 tenths in each group.	Use a bar model to represent divisions. $4 \times 2=8$ $8 \div 4=2$ So, $4 \times 0.2=0.8$ $0.8 \div 4=0.2$	Use short division to divide decimals with up to 2 decimal places. $\begin{array}{c\|c} 8 & 4 \cdot 24 \\ 0 \cdot \\ 8 & 4 \cdot{ }^{4} 24 \\ 0 \cdot 5 \\ 8 & 4 \cdot{ }^{4} 2^{2} 4 \\ 0 \cdot 5 \quad 3 \\ 8 & 4 \cdot{ }^{4} 2{ }^{2} 4 \\ \hline \end{array}$

