Edgar Stammers Primary Academy

Calculation policy LKS2

At Edgar Stammers we follow Power Maths. The following pages show the progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the CPA (concrete, pictorial, abstract) approach across our school helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

KEY STAGE 2

In Years 3 and 4, children develop the basis of written methods by building their skills alongside a deep understanding of place value. They should use known addition/subtraction and multiplication/division facts to calculate efficiently and accurately, rather than relying on counting. Children use place value equipment to support their understanding, but not as a substitute for thinking.
Key language: partition, place value, tens, hundreds, thousands, column method, whole, part, equal groups, sharing, grouping, bar model

Addition and subtraction: In Year 3 especially, the column methods are built up gradually. Children will develop their understanding of how each stage of the calculation, including any exchanges, relates to place value. The example calculations chosen to introduce the stages of each method may often be more suited to a mental method. However, the examples and the progression of the steps have been chosen to help children develop their fluency in the process, alongside a deep understanding of the concepts and the numbers involved, so that they can apply these skills accurately and efficiently to later calculations. The class should be encouraged to compare mental and written methods for specific calculations, and children should be encouraged at every stage to make choices about which methods to apply.
In Year 4, the steps are shown without such fine detail, although children should continue to build their understanding with a secure basis in place value. In subtraction, children will need to develop their understanding of exchange as they may need to exchange across one or two columns.
By the end of Year 4, children should have developed fluency in column methods alongside a deep understanding, which will allow them to progress confidently in upper Key Stage 2.

Multiplication and division: Children build a solid grounding in times-tables, understanding the multiplication and division facts in tandem. As such, they should be as confident knowing that 35 divided by 7 is 5 as knowing that 5 times 7 is 35 . Children develop key skills to support multiplication methods: unitising, commutativity, and how to use partitioning effectively.
Unitising allows children to use known facts to multiply and divide multiples of 10 and 100 efficiently. Commutativity gives children flexibility in applying known facts to calculations and problem solving. An understanding of partitioning allows children to extend their skills to multiplying and dividing 2 - and 3-digit numbers by a single digit. Children develop column methods to support multiplications in these cases.
For successful division, children will need to make choices about how to partition. For example, to divide 423 by 3 , it is effective to partition 423 into 300,120 and 3 , as these can be divided by 3 using known facts.
Children will also need to understand the concept of remainder, in terms of a given calculation and in terms of the context of the problem.

Fractions: Children develop the key concept of equivalent fractions, and link this with multiplying and dividing the numerators and denominators, as well as exploring the visual concept through fractions of shapes. Children learn how to find a fraction of an amount, and develop this with the aid of a bar model and other representations alongside. in Year 3, children develop an understanding of how to add and subtract fractions with the same denominator and find complements to the whole. This is developed alongside an understanding of fractions as numbers, including fractions greater than 1. In Year 4, children begin to work with fractions greater than 1.
Decimals are introduced, as tenths in Year 3 and then as hundredths in Year 4. Children develop an understanding of decimals in terms of the relationship with fractions, with dividing by 10 and 100 , and also with place value.

Adding 100s	Use known facts and unitising to add multiples of 100. $3+2=5$ 3 hundreds +2 hundreds $=5$ hundreds $300+200=500$	Use known facts and unitising to add multiples of 100. $3+4=7$ 3 hundreds +4 hundreds $=7$ hundreds $300+400=700$		Use known facts and unitising to add multiples of 100. Represent the addition on a number line. Use a part-whole model to support unitising. $\begin{aligned} & 3+2=5 \\ & 300+200=500 \end{aligned}$
3-digit number + 1s, no exchange or bridging	Use number bonds to add the 1 s . 10 LOLLIES $214+4=?$ Now there are $4+4$ ones in total. $4+4=8$ $214+4=218$	Use number bo $\begin{aligned} & 245+4 \\ & 5+4=9 \\ & 245+4=249 \end{aligned}$	ds to add the 1s. Use number bonds to add the ls. $5+4=9$	Understand the link with counting on. $245+4$ Use number bonds to add the 1s and understand that this is more efficient and less prone to error. $245+4=?$ I will add the 1 s .

$\begin{aligned} & \text { 3-digit number } \\ & +10 s \text {, no } \\ & \text { exchange } \end{aligned}$	Calculate mentally by forming the number bond for the 10s. $234+50$ There are 3 tens and 5 tens altogether. $3+5=8$ In total there are 8 tens. $234+50=284$	Calculate mentally by forming the number bond for the 10s. $351+30=?$ 5 tens +3 tens $=8$ tens $351+30=381$	Calculate mentally by forming the number bond for the 10s. $753+40$ I know that $5+4=9$ So, $50+40=90$ $753+40=793$
3-digit number + 10s, with exchange	Understand the exchange of 10 tens for 1 hundred. -	Add by exchanging 10 tens for 1 hundred. $184+20=?$ $184+20=204$	Understand how the addition relates to counting on in 10s across 100. $184+20=?$ I can count in 10s ... 194 ... 204 $184+20=204$ Use number bonds within 20 to support efficient mental calculations. $385+50$ There are 8 tens and 5 tens. That is 13 tens. $385+50=300+130+5$

			$385+50=435$
3-digit number + 2-digit number	Use place value equipment to make and combine groups to model addition.	Use a place value grid to organise thinking and adding of 1 s , then 10 s .	Use the vertical column method to represent the addition. Children must understand how this relates to place value at each stage of the calculation.
3-digit number + 2-digit number, exchange required	Use place value equipment to model addition and understand where exchange is required. Use place value counters to represent $154+72$. Use this to decide if any exchange is required. There are 5 tens and 7 tens. That is 12 tens so I will exchange.	Represent the required exchange on a place value grid using equipment. $275+16=?$ $275+16=291$ Note: In this example, a mental method may be more efficient. The numbers for the example calculation have been chosen to allow children to visualise the concept and see how the method relates to place value.	Use a column method with exchange. Children must understand how the method relates to place value at each stage of the calculation. $275+16=291$

		Children should be encouraged at every stage to select methods that are accurate and efficient.	
3-digit number + 3-digit number, no exchange	Use place value equipment to make a representation of a calculation. This may or may not be structured in a place value grid. $326+541$ is represented as:	Represent the place value grid with equipment to model the stages of column addition.	Use a column method to solve efficiently, using known bonds. Children must understand how this relates to place value at every stage of the calculation.
3-digit number + 3-digit number, exchange required	Use place value equipment to enact the exchange required. There are 13 ones. I will exchange 10 ones for 1 ten.	Model the stages of column addition using place value equipment on a place value grid.	Use column addition, ensuring understanding of place value at every stage of the calculation. $126+217=343$

		 (8989	Note: Children should also study examples where exchange is required in more than one column, for example 185 + $318=$?
Representing addition problems, and selecting appropriate methods	Encourage children to use their own drawings and choices of place value equipment to represent problems with one or more steps. These representations will help them to select appropriate methods.	Children understand and create bar models to represent addition problems. $275+99=?$ $275+99=374$	Use representations to support choices of appropriate methods. I will add 100 , then subtract 1 to find the solution. $128+105+83=?$ I need to add three numbers.

	$\begin{aligned} & 4-3=1 \\ & 214-3=211 \end{aligned}$	$\begin{aligned} & 9-4=5 \\ & 319-4= \end{aligned}$	315		$\begin{aligned} & 6-4=2 \\ & 476-4=472 \end{aligned}$
3－digit number －1s， exchange or bridging required	Understand why an exchange is necessary by exploring why 1 ten must be exchanged． Use place value equipment．	Represen place val $151-6=$	the requ grid． T	ired exchange on a \square 0 ロ日回日品	Calculate mentally by using known bonds． $151-6=?$ $151-1-5=145$
3－digit number －10s，no exchange	Subtract the 10s using known bonds． $381-10=?$	Subtrac 8 tens－ 381－10	he 10s \square T ten $=7$ t 371	sing known bonds． ns	Use known bonds to subtract the 10s mentally． $\begin{aligned} & 372-50=? \\ & 70-50=20 \end{aligned}$ So， $372-50=322$

			$\begin{array}{rrr} H & T & O \\ \hline 9 & 9 & 9 \\ -3 & 5 & 2 \\ \hline & & 7 \\ \hline H & T & O \\ \hline 9 & 9 & 9 \\ -3 & 5 & 2 \\ \hline & 4 & 7 \\ \hline H & & 0 \\ \hline & T & O \\ \hline 9 & 9 & 9 \\ -3 & 5 & 2 \\ \hline 6 & 4 & 7 \end{array}$
3-digit number - up to 3digit number, exchange required	Use equipment to enact the exchange of 1 hundred for 10 tens, and 1 ten for 10 ones.	Model the required exchange on a place value grid. $175-38=?$ I need to subtract 8 ones, so I will exchange a ten for 10 ones.	Use column subtraction to work accurately and efficiently. $\begin{array}{r} H \quad \mathrm{~T} \\ \hline \mathrm{I} \lambda 15 \\ -\quad 38 \\ \hline 137 \\ \hline \end{array}$ $175-38=137$ If the subtraction is a 3-digit number subtract a 2-digit number, children should understand how the recording relates to the place value, and so how to line up the digits correctly. Children should also understand how to exchange in calculations where there is a zero in the 10s column. \square H TO 5 3 -328
Representing subtraction problems		Use bar models to represent subtractions.	Children use alternative representations to check calculations and choose efficient methods.

		'Find the difference' is represented as two bars for comparison. Bar models can also be used to show that a part must be taken away from the whole.	Children use inverse operations to check additions and subtractions. The part-whole model supports understanding. I have completed this subtraction. $525-270=255$ I will check using addition. $\begin{array}{r} \mathrm{H} \\ \hline 2 \end{array} \mathrm{O}, \mathrm{O}$
Year 3 Multiplication			
Understanding equal grouping and repeated addition	Children continue to build understanding of equal groups and the relationship with repeated addition. They recognise both examples and nonexamples using objects. Children recognise that arrays can be used to model commutative multiplications.	Children recognise that arrays demonstrate commutativity. This is 3 groups of 4 . This is 4 groups of 3 .	Children understand the link between repeated addition and multiplication. 8 groups of 3 is 24 . $\begin{aligned} & 3+3+3+3+3+3+3+3=24 \\ & 8 \times 3=24 \end{aligned}$ A bar model may represent multiplications as equal groups.

| $\times 2, \times 4$ and $\times 8$ |
| :--- | :--- |
| tables. |

number	Each person has 23 Each person has 2 There are 3 groups There are 3 group Use place value eq multiplication cont There are 3 group There are 3 group	s. 3 ones. ns. nes. to model the nes. ns.	$3 \times 24=?$ $3 \times 4=12$ $\begin{aligned} & 3 \times 20=60 \\ & 60+12=72 \\ & 3 \times 24=72 \end{aligned}$		$\begin{aligned} & 4 \times 13=? \\ & 4 \times 3=12 \\ & 12+40=52 \\ & 4 \times 13=52 \end{aligned}$	$4 \times 10=40$
Multiplying a 2-digit number by a 1 -digit	Use place value eq 10 ones are exchan multiplications.	to model how a 10 in some	Understand th require an exc also 10s for 10	tiplications may of 1 s for 10 s , and	Children ma expanded co understand	calculations in form, but must k with place value and

| | cannot be divided equally any further.
 \||||||||||||| $\square \square \square \mid$
 There are 13 sticks in total.
 There are 3 groups of 4 , with 1 remainder. | $22 \div 5=4$ remainder 2 | $22 \div 5=?$ $\begin{aligned} & 3 \times 5=15 \\ & 4 \times 5=20 \end{aligned}$
 $5 \times 5=25 \ldots$ this is larger than 22
 So, $22 \div 5=4$ remainder 2 |
| :---: | :---: | :---: | :---: |
| Using known facts to divide multiples of 10 | Use place value equipment to understand how to divide by unitising.
 Make 6 ones divided by 3.
 Now make 6 tens divided by 3 .
 What is the same? What is different? | Divide multiples of 10 by unitising.
 12 tens shared into 3 equal groups. 4 tens in each group. | Divide multiples of 10 by a single digit using known times-tables. $180 \div 3=?$
 180 is 18 tens.
 18 divided by 3 is 6 .
 18 tens divided by 3 is 6 tens. $\begin{aligned} & 18 \div 3=6 \\ & 180 \div 3=60 \end{aligned}$ |
| 2-digit number divided by 1-digit number, no remainders | Children explore dividing 2-digit numbers by using place value equipment.
 आणाm
 आाITIT
 आाIाIm
 $48 \div 2=?$ | Children explore which partitions support particular divisions.
 I need to partition 42 differently to | Children partition a number into 10 s and 1s to divide where appropriate. $\begin{gathered} 60 \div 2=30 \\ 8 \div 2=4 \\ 30+4=34 \\ 68 \div 2=34 \end{gathered}$ |

[^0]| | First divide the 10s．
 Then divide the 1s． ロ日日
 日昌日 | divide by 3. $\begin{aligned} & 42=30+12 \\ & 42 \div 3=14 \end{aligned}$ | Children partition flexibly to divide where appropriate． $\begin{aligned} & 42 \div 3=? \\ & 42=40+2 \end{aligned}$
 I need to partition 42 differently to divide by 3. $42=30+12$ $30 \div 3=10$ $12 \div 3=4$ $\begin{aligned} & 10+4=14 \\ & 42 \div 3=14 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 2－digit number divided by 1－digit number，with remainders | Use place value equipment to understand the concept of remainder．
 Make 29 from place value equipment． Share it into 2 equal groups．
 There are two groups of 14 and 1 remainder． | Use place value equipment to understand the concept of remainder in division． $29 \div 2=?$ \square
 $29 \div 2=14$ remainder 1 | Partition to divide，understanding the remainder in context．
 67 children try to make 5 equal lines． $\begin{aligned} & 67=50+17 \\ & 50 \div 5=10 \end{aligned}$
 $17 \div 5=3$ remainder 2
 $67 \div 5=13$ remainder 2
 There are 13 children in each line and 2 children left out． |

	$300 ?$		
Column subtraction with exchange	Understand why exchange of a 1,000 for 100s，a 100 for 10 s，or a 10 for 1 s may be necessary． \rightarrow 臊㫛照	Represent place value equipment on a place value grid to subtract，including exchanges where needed．	Use column subtraction，with understanding of the place value of any exchange required．
Column subtraction with exchange across more than one column	Understand why two exchanges may be necessary． $2,502-243=?$ g	Make exchanges across more than one column where there is a zero as a place holder． $2,502-243=?$	Make exchanges across more than one column where there is a zero as a place holder． $2,502-243=?$

[^1]| | I need to exchange a 10 for some 1 s, but there are not any 10s here. | | $\begin{array}{rrrr} \text { Th } & \mathrm{H} & \mathrm{~T} & \mathrm{O} \\ \hline 2 & 48 & 9 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: |
| Representing subtractions and checking strategies | | Use bar models to represent subtractions where a part needs to be calculated.
 I can work out the total number of Yes votes using 5,762-2,899.
 Bar models can also represent 'find the difference' as a subtraction problem. | Use inverse operations to check subtractions.
 I calculated 1,225-799=574.
 I will check by adding the parts.
 The parts do not add to make 1,225. I must have made a mistake. |
| Year 4
 Multiplication | | | |

Multiplying by multiples of 10 and 100	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100 . 3 groups of 4 ones is 12 ones. 3 groups of 4 tens is 12 tens. 3 groups of 4 hundreds is 12 hundreds.	Use unitising and place value equipment to understand how to multiply by multiples of 1,10 and 100. $3 \times 4=12$ $3 \times 40=120$ $3 \times 400=1,200$	Use known facts and understanding of place value and commutativity to multiply mentally. $4 \times 7=28$ $4 \times 70=280$ $40 \times 7=280$ $\begin{aligned} & 4 \times 700=2,800 \\ & 400 \times 7=2,800 \end{aligned}$
Understanding times-tables up to 12×12	Understand the special cases of multiplying by 1 and 0 .	Represent the relationship between the $\times 9$ table and the $\times 10$ table. Represent the $\times 11$ table and $\times 12$ tables in relation to the $\times 10$ table. $\begin{aligned} & 2 \times 11=20+2 \\ & 3 \times 11=30+3 \\ & 4 \times 11=40+4 \end{aligned}$ $4 \times 12=40+8$	Understand how times-tables relate to counting patterns. Understand links between the $\times 3$ table, $\times 6$ table and $\times 9$ table 5×6 is double 5×3 $\times 5$ table and $\times 6$ table I know that $7 \times 5=35$ so I know that $7 \times 6=35+7$. $\times 5$ table and $\times 7$ table $3 \times 7=3 \times 5+3 \times 2$ $\times 9$ table and $\times 10$ table $6 \times 10=60$ $6 \times 9=60-6$

Understanding and using partitioning in multiplication	Make multiplications by partitioning. 4×12 is 4 groups of 10 and 4 groups of 2 . $4 \times 12=40+8$	Understand how multiplication and partitioning are related through addition. $\begin{aligned} & 4 \times 3=12 \\ & 4 \times 5=20 \\ & 12+20=32 \\ & 4 \times 8=32 \end{aligned}$	Use partitioning to multiply 2-digit numbers by a single digit. $18 \times 6=?$ $\begin{aligned} 18 \times 6 & =10 \times 6+8 \times 6 \\ & =60+48 \\ & =108 \end{aligned}$
Column multiplication for 2- and 3-digit numbers multiplied by a single digit	Use place value equipment to make multiplications. Make 4×136 using equipment. I can work out how many 1s, 10s and 100s. There are 4×6 ones... 24 ones There are 4×3 tens ... 12 tens There are 4×1 hundreds ... 4 hundreds $24+120+400=544$	Use place value equipment alongside a column method for multiplication of up to 3-digit numbers by a single digit.	Use the formal column method for up to 3-digit numbers multiplied by a single digit. $\begin{array}{r} 312 \\ \times \quad 3 \\ \hline 936 \\ \hline \end{array}$ Understand how the expanded column method is related to the formal column method and understand how any exchanges are related to place value at each stage of the calculation.

Multiplying more than two numbers	Represent situations by multiplying three numbers together. Each sheet has 2×5 stickers. There are 3 sheets. There are $5 \times 2 \times 3$ stickers in total. $\underbrace{5 \times 2}_{10 \times 3} \times 3=30$	Understand that commutativity can be used to multiply in different orders. $\begin{array}{r} 2 \times 6 \times 10=120 \\ 12 \times 10=120 \end{array}$ $\begin{array}{r} 10 \times 6 \times 2=120 \\ 60 \times 2=120 \end{array}$	Use knowledge of factors to simplify some multiplications. $\begin{aligned} & 24 \times 5=12 \times 2 \times 5 \\ & 12 \times 2 \times 5= \\ & \underbrace{2 \times 10}_{12 \times 10}=120 \end{aligned}$ So, $24 \times 5=120$
Year 4 Division			
Understanding the relationship between multiplication and division, including times-tables	Use objects to explore families of multiplication and division facts. $4 \times 6=24$ 24 is 6 groups of 4 . 24 is 4 groups of 6 . 24 divided by 6 is 4 . 24 divided by 4 is 6 .	Represent divisions using an array. \square 0000000 \square $28 \div 7=4$	Understand families of related multiplication and division facts. I know that $5 \times 7=35$ so I know all these facts: $\begin{aligned} & 5 \times 7=35 \\ & 7 \times 5=35 \\ & 35=5 \times 7 \\ & 35=7 \times 5 \\ & 35 \div 5=7 \\ & 35 \div 7=5 \\ & 7=35 \div 5 \end{aligned}$

			$5=35 \div 7$
Dividing multiples of 10 and 100 by a single digit	Use place value equipment to understand how to use unitising to divide. 8 ones divided into 2 equal groups 4 ones in each group 8 tens divided into 2 equal groups 4 tens in each group 8 hundreds divided into 2 equal groups 4 hundreds in each group	Represent divisions using place value equipment. 9 tens divided by 3 is 3 tens. 9 hundreds divided by 3 is 3 hundreds.	Use known facts to divide 10s and 100s by a single digit. $\begin{aligned} & 15 \div 3=5 \\ & 150 \div 3=50 \\ & 1500 \div 3=500 \end{aligned}$
Dividing 2digit and 3digit numbers by a single digit by partitioning into 100s, 10s and 1 s	Partition into 10 s and 1 s to divide where appropriate. $39 \div 3=?$ $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \end{gathered}$	Partition into 100s, 10s and 1s using Base 10 equipment to divide where appropriate. $39 \div 3=?$ 3 groups of I ten 3 groups of 3 ones $\begin{gathered} 39=30+9 \\ 30 \div 3=10 \\ 9 \div 3=3 \end{gathered}$	Partition into 100s, 10s and 1s using a part-whole model to divide where appropriate. $142 \div 2=?$ $\begin{aligned} 100 \div 2 & =50 \\ 40 \div 2 & =20 \\ 6 \div 2 & =3 \end{aligned}$

	$39 \div 3=13$	$39 \div 3=13$	$\begin{array}{r} 50+20+3=73 \\ 142 \div 2=73 \end{array}$
Dividing 2digit and 3digit numbers by a single digit, using flexible partitioning	Use place value equipment to explore why different partitions are needed. $42 \div 3=?$ I will split it into 30 and 12 , so that I can divide by 3 more easily.	Represent how to partition flexibly where needed. $84 \div 7=?$ I will partition into 70 and 14 because I am dividing by 7 . $84 \div 7=12$	Make decisions about appropriate partitioning based on the division required. $72 \div 2=36$ $72 \div 3=24$ $72 \div 4=18$ $72 \div 6=12$ Understand that different partitions can be used to complete the same division.
Understanding remainders	Use place value equipment to find remainders. 85 shared into 4 equal groups There are 24, and 1 that cannot be shared.	Represent the remainder as the part that cannot be shared equally. $72 \div 5=14$ remainder 2	Understand how partitioning can reveal remainders of divisions. $\begin{aligned} & 80 \div 4=20 \\ & 12 \div 4=3 \end{aligned}$

[^0]: Maths Leader: Stephanie Heath

[^1]: Maths Leader：Stephanie Heath

